中教数据库 > 实验室研究与探索 > 文章详情

一种基于LSTM神经网络的电力负荷预测方法

更新时间:2023-05-28

【摘要】设计了一种基于长短期记忆(LSTM)神经网络的电力负荷预测模型,在TensorFlow框架下使用Python语言编程实现;使用西班牙2018年一整年的电力负荷数据对模型进行训练,得到的模型可准确预测电力负荷数据的日变化、周变化规律,模型损失值可达0. 2,验证了模型的有效性;与RNN模型对比证明了LSTM模型的长期依赖学习能力更为优越。提出的模型是一种有效的电力负荷数据预测方法,可为电力系统的负荷预测提供依据。

【关键词】

233 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号