【摘要】设计了一种基于长短期记忆(LSTM)神经网络的电力负荷预测模型,在TensorFlow框架下使用Python语言编程实现;使用西班牙2018年一整年的电力负荷数据对模型进行训练,得到的模型可准确预测电力负荷数据的日变化、周变化规律,模型损失值可达0. 2,验证了模型的有效性;与RNN模型对比证明了LSTM模型的长期依赖学习能力更为优越。提出的模型是一种有效的电力负荷数据预测方法,可为电力系统的负荷预测提供依据。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《现代制造技术与装备》 2015-06-25
《广州大学学报(社会科学版)》 2015-07-06
《重庆高教研究》 2015-06-30
《中外医疗》 2015-07-06
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点